import requests import pandas as pd import csv data=pd.read_csv("input_file/upay_district_list_with_address_unique.csv",keep_default_na=False) name_en=data['name_en'].tolist() name_bn=data['name_bn'].tolist() district_en=data['district_en'].tolist() district_bn=data['district_bn'].tolist() address_en=data['address_en'].tolist() address_bn=data['address_bn'].tolist() thana_en=data['thana_en'].tolist() thana_bn=data['thana_bn'].tolist() def parse(input_addr): response = requests.post('http://rupantor.bmapsbd.com/test/transparse', data = {'addr':input_addr}) return response.json() # d = parse("rajshahi") # print(d['confidence_score_percentage']) with open('Output Folder/Rupantor_Upai_data_Parsedd.csv','w',newline='') as f: writer=csv.writer(f) cnt=0 writer.writerow(["name_en","name_bn","district_en","district_bn","address_en","address_bn","thana_en","thana_bn","geocoded_address","confidence_score"]) for i in range(0,len(district_en)): n=address_en[i] if "DHAKA" in district_en[i]: cnt+=1 print(cnt) ans=parse(n) geocoded_Address=ans['geocoded'].get('Address') confidence_score=ans['confidence_score_percentage'] writer.writerow([name_en[i],name_bn[i],district_en[i],district_bn[i],address_en[i],address_bn[i],thana_en[i],thana_bn[i]])